Select Page

China China Professional Harmonic Drive Gear with Wave Generator spiral bevel gear

Solution Description

Item Description:

1.Flexspline is a hollow flanging normal cylinder framework.

2.There is a big-diameter hollow shaft gap in the middle of the cam of the wave generator. The inside layout of the reducer has a support bearing.

3.It has a fully sealed framework and is easy to install. It is quite appropriate for the events exactly where the wire demands to be threaded from the middle of the reducer.

Benefits:

The very first:High precision,high torque

The second:focused specialized personnel can be on-the-go to supply design remedies

The third:Manufacturing unit immediate sales fine workmanship resilient high quality assurance

The fourth:Product top quality concerns have a a single-calendar year guarantee time, can be returned for replacement or repair

Company profile:

 

HangZhou CZPT Technologies Co., Ltd. set up in 2014, is fully commited to the R & D plant of higher-precision transmission parts. At current, the annual manufacturing capacity can reach 45000 sets of harmonic reducers. We firmly believe in quality 1st. All back links from uncooked components to finished goods are strictly supervised and controlled, which provides a strong basis for merchandise good quality. Our items are offered all in excess of the region and abroad.

The harmonic reducer and other substantial-precision transmission elements were independently designed by the organization. Our business spends 20% of its income every single calendar year on the study and advancement of new technologies in the business. There are 5 individuals in R & D.

Our gain is as beneath:

one.7 years of advertising encounter

2. 5-man or woman R & D group to offer you with complex help

three. It is offered at residence and abroad and exported to Turkey and Ireland

four. The solution quality is confirmed with a 1-yr warranty

5. Items can be tailored

Power factory:

Our plant has an whole campus The number of workshops is close to three hundred Whether it’s from the production of raw components and the procurement of uncooked materials to the inspection of completed merchandise, we are undertaking it ourselves. There is a complete generation system

HST-III Parameter:

Model Speed ratio Enter the rated torque at 2000r/min Allowed CZPT torque at start off stop The allowable highest of the typical load torque Maximum torque is allowed in an instant Let the optimum pace to be entered Average input pace is authorized Back gap style existence
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
14 50 6.2 .6 twenty.7 2.1 seven.nine .seven forty.3 4.one 7000 3000 ≤30 10000
80 nine .9 27 two.7 twelve.7 one.3 54.one 5.5
one hundred 9 .nine 32 3.3 12.seven one.3 62.one 6.three
17 fifty 18.four 1.nine 39 four 29.nine three eighty.five 8.two 6500 3000 ≤30 15000
80 twenty five.three two.6 49.five five 31 3.2 100.one 10.2
100 27.6 two.eight sixty two 6.three 45 four.six 124.2 12.seven
20 50 28.8 2.nine 64.4 6.6 39 four 112.seven 11.5 5600 3000 ≤30 15000
eighty 39.1 4 eighty five 8.eight fifty four 5.five 146.one fourteen.9
100 forty six 4.7 ninety four.three nine.6 fifty six five.8 169.1 seventeen.2
one hundred twenty 46 4.7 one hundred ten.2 fifty six 5.8 169.one seventeen.two
160 46 four.7 one hundred ten.two 56 5.8 169.1 17.two
25 50 44.nine 4.six 113 11.5 63 6.five 213.nine 21.8 4800 3000 ≤30 15000
80 72.5 7.four 158 16.1 one hundred 10.two 293.three 29.9
a hundred seventy seven.1 seven.nine 181 eighteen.four 124 twelve.seven 326.six 33.3
one hundred twenty 77.1 seven.9 192 19.6 124 12.7 349.six 35.six
32 50 87.4 eight.nine 248 twenty five.three 124 twelve.seven 439 44.8 4000 3000 ≤30 15000
80 one hundred thirty five.7 13.8 350 35.six 192 19.6 653 sixty six.six
100 157.6 sixteen.one 383 39.1 248 twenty five.three 744 seventy five.nine
40 a hundred 308 37.2 660 sixty seven 432 forty four 1232 126.7 4000 3000 ≤30 15000

HSG Parameter:

Model Speed ratio Enter the rated torque at 2000r/min Allowed CZPT torque at start off end The allowable maximum of the regular load torque Maximum torque is authorized in an instant Allow the maximum pace to be entered Typical input pace is authorized Back again gap layout life
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
14 50 seven .seven 23 two.3 9 .nine 46 4.seven 14000 8500 ≤20 15000
80 ten 1 30 3.1 14 1.4 sixty one six.2
one hundred 10 1 36 three.7 fourteen 1.4 70 7.two
17 fifty 21 2.one 44 4.5 34 three.4 91 9 10000 7300 ≤20 20000
80 29 two.9 fifty six 5.7 35 3.six 113 twelve
100 31 three.2 70 7.two 51 5.two 143 15
20 50 33 3.3 73 7.four forty four four.five 127 13 10000 6500 ≤20 20000
80 forty four 4.five ninety six nine.eight sixty one six.2 a hundred sixty five seventeen
one hundred fifty two five.3 107 ten.nine 64 6.five 191 20
one hundred twenty 52 five.3 113 eleven.five sixty four six.5 191 twenty
160 52 five.three 120 twelve.2 sixty four six.five 191 20
25 fifty 51 five.2 127 thirteen seventy two 7.three 242 25 7500 5600 ≤20 20000
80 eighty two 8.four 178 18 113 12 332 34
a hundred 87 8.nine 204 21 140 14 369 38
a hundred and twenty 87 8.nine 217 22 a hundred and forty 14 395 forty
32 50 99 ten 281 29 140 fourteen 497 fifty one 7000 4800 ≤20 20000
eighty 153 16 395 40 217 22 738 seventy five
100 178 eighteen 433 44 281 29 841 86
40 one hundred 345 35 738 75 484 49 1400 143 5600 4000 ≤20 20000

Exhibition:

Application situation:

FQA:
Q: What must I provide when I choose gearbox/velocity reducer?
A: The very best way is to give the motor drawing with parameter. Our engineer will check and advise the most suitable gearbox model for your refer.
Or you can also give beneath specification as properly:
1) Variety, product and torque.
2) Ratio or output velocity
three) Functioning problem and link method
four) High quality and installed device title
five) Enter mode and input velocity
6) Motor brand name model or flange and motor shaft dimension

US $309.5
/ Piece
|
1 Piece

(Min. Order)

###

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Car
Hardness: Hardened Tooth Surface
Installation: 90 Degree
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Single-Step

###

Customization:

###

Model Speed ratio Enter the rated torque at 2000r/min Allowed peak torque at start stop The allowable maximum of the average load torque Maximum torque is allowed in an instant Allow the maximum speed to be entered Average input speed is allowed Back gap design life
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
14 50 6.2 0.6 20.7 2.1 7.9 0.7 40.3 4.1 7000 3000 ≤30 10000
80 9 0.9 27 2.7 12.7 1.3 54.1 5.5
100 9 0.9 32 3.3 12.7 1.3 62.1 6.3
17 50 18.4 1.9 39 4 29.9 3 80.5 8.2 6500 3000 ≤30 15000
80 25.3 2.6 49.5 5 31 3.2 100.1 10.2
100 27.6 2.8 62 6.3 45 4.6 124.2 12.7
20 50 28.8 2.9 64.4 6.6 39 4 112.7 11.5 5600 3000 ≤30 15000
80 39.1 4 85 8.8 54 5.5 146.1 14.9
100 46 4.7 94.3 9.6 56 5.8 169.1 17.2
120 46 4.7 100 10.2 56 5.8 169.1 17.2
160 46 4.7 100 10.2 56 5.8 169.1 17.2
25 50 44.9 4.6 113 11.5 63 6.5 213.9 21.8 4800 3000 ≤30 15000
80 72.5 7.4 158 16.1 100 10.2 293.3 29.9
100 77.1 7.9 181 18.4 124 12.7 326.6 33.3
120 77.1 7.9 192 19.6 124 12.7 349.6 35.6
32 50 87.4 8.9 248 25.3 124 12.7 439 44.8 4000 3000 ≤30 15000
80 135.7 13.8 350 35.6 192 19.6 653 66.6
100 157.6 16.1 383 39.1 248 25.3 744 75.9
40 100 308 37.2 660 67 432 44 1232 126.7 4000 3000 ≤30 15000

###

Model Speed ratio Enter the rated torque at 2000r/min Allowed peak torque at start stop The allowable maximum of the average load torque Maximum torque is allowed in an instant Allow the maximum speed to be entered Average input speed is allowed Back gap design life
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
14 50 7 0.7 23 2.3 9 0.9 46 4.7 14000 8500 ≤20 15000
80 10 1 30 3.1 14 1.4 61 6.2
100 10 1 36 3.7 14 1.4 70 7.2
17 50 21 2.1 44 4.5 34 3.4 91 9 10000 7300 ≤20 20000
80 29 2.9 56 5.7 35 3.6 113 12
100 31 3.2 70 7.2 51 5.2 143 15
20 50 33 3.3 73 7.4 44 4.5 127 13 10000 6500 ≤20 20000
80 44 4.5 96 9.8 61 6.2 165 17
100 52 5.3 107 10.9 64 6.5 191 20
120 52 5.3 113 11.5 64 6.5 191 20
160 52 5.3 120 12.2 64 6.5 191 20
25 50 51 5.2 127 13 72 7.3 242 25 7500 5600 ≤20 20000
80 82 8.4 178 18 113 12 332 34
100 87 8.9 204 21 140 14 369 38
120 87 8.9 217 22 140 14 395 40
32 50 99 10 281 29 140 14 497 51 7000 4800 ≤20 20000
80 153 16 395 40 217 22 738 75
100 178 18 433 44 281 29 841 86
40 100 345 35 738 75 484 49 1400 143 5600 4000 ≤20 20000
US $309.5
/ Piece
|
1 Piece

(Min. Order)

###

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Car
Hardness: Hardened Tooth Surface
Installation: 90 Degree
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Single-Step

###

Customization:

###

Model Speed ratio Enter the rated torque at 2000r/min Allowed peak torque at start stop The allowable maximum of the average load torque Maximum torque is allowed in an instant Allow the maximum speed to be entered Average input speed is allowed Back gap design life
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
14 50 6.2 0.6 20.7 2.1 7.9 0.7 40.3 4.1 7000 3000 ≤30 10000
80 9 0.9 27 2.7 12.7 1.3 54.1 5.5
100 9 0.9 32 3.3 12.7 1.3 62.1 6.3
17 50 18.4 1.9 39 4 29.9 3 80.5 8.2 6500 3000 ≤30 15000
80 25.3 2.6 49.5 5 31 3.2 100.1 10.2
100 27.6 2.8 62 6.3 45 4.6 124.2 12.7
20 50 28.8 2.9 64.4 6.6 39 4 112.7 11.5 5600 3000 ≤30 15000
80 39.1 4 85 8.8 54 5.5 146.1 14.9
100 46 4.7 94.3 9.6 56 5.8 169.1 17.2
120 46 4.7 100 10.2 56 5.8 169.1 17.2
160 46 4.7 100 10.2 56 5.8 169.1 17.2
25 50 44.9 4.6 113 11.5 63 6.5 213.9 21.8 4800 3000 ≤30 15000
80 72.5 7.4 158 16.1 100 10.2 293.3 29.9
100 77.1 7.9 181 18.4 124 12.7 326.6 33.3
120 77.1 7.9 192 19.6 124 12.7 349.6 35.6
32 50 87.4 8.9 248 25.3 124 12.7 439 44.8 4000 3000 ≤30 15000
80 135.7 13.8 350 35.6 192 19.6 653 66.6
100 157.6 16.1 383 39.1 248 25.3 744 75.9
40 100 308 37.2 660 67 432 44 1232 126.7 4000 3000 ≤30 15000

###

Model Speed ratio Enter the rated torque at 2000r/min Allowed peak torque at start stop The allowable maximum of the average load torque Maximum torque is allowed in an instant Allow the maximum speed to be entered Average input speed is allowed Back gap design life
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
14 50 7 0.7 23 2.3 9 0.9 46 4.7 14000 8500 ≤20 15000
80 10 1 30 3.1 14 1.4 61 6.2
100 10 1 36 3.7 14 1.4 70 7.2
17 50 21 2.1 44 4.5 34 3.4 91 9 10000 7300 ≤20 20000
80 29 2.9 56 5.7 35 3.6 113 12
100 31 3.2 70 7.2 51 5.2 143 15
20 50 33 3.3 73 7.4 44 4.5 127 13 10000 6500 ≤20 20000
80 44 4.5 96 9.8 61 6.2 165 17
100 52 5.3 107 10.9 64 6.5 191 20
120 52 5.3 113 11.5 64 6.5 191 20
160 52 5.3 120 12.2 64 6.5 191 20
25 50 51 5.2 127 13 72 7.3 242 25 7500 5600 ≤20 20000
80 82 8.4 178 18 113 12 332 34
100 87 8.9 204 21 140 14 369 38
120 87 8.9 217 22 140 14 395 40
32 50 99 10 281 29 140 14 497 51 7000 4800 ≤20 20000
80 153 16 395 40 217 22 738 75
100 178 18 433 44 281 29 841 86
40 100 345 35 738 75 484 49 1400 143 5600 4000 ≤20 20000

Types of Miter Gears

The different types of miter gears include Hypoid, Crown, and Spiral. To learn more, read on. In addition, you’ll learn about their differences and similarities. This article will provide an overview of the different types of miter gears. You can also choose the type that fits your needs by using the guide below. After you’ve read it, you’ll know how to use them in your project. You’ll also learn how to pair them up by hand, which is particularly useful if you’re working on a mechanical component.
gear

Bevel gears

Bevel and miter gears are both used to connect two shafts that have different axes. In most cases, these gears are used at right angles. The pitch cone of a bevel gear has the same shape as that of a spur gear, except the tooth profile is slightly tapered and has variable depth. The pinions of a bevel gear are normally straight, but can be curved or skew-shaped. They can also have an offset crown wheel with straight teeth relative to the axis.
In addition to their industrial applications, miter gears are found in agriculture, bottling, printing, and various industrial sectors. They are used in coal mining, oil exploration, and chemical processes. They are an important part of conveyors, elevators, kilns, and more. In fact, miter gears are often used in machine tools, like forklifts and jigsaws.
When considering which gear is right for a certain application, you’ll need to think about the application and the design goals. For example, you’ll want to know the maximum load that the gear can carry. You can use computer simulation programs to determine the exact torque required for a specific application. Miter gears are bevel gears that are geared on a single axis, not two.
To calculate the torque required for a particular application, you’ll need to know the MA of each bevel gear. Fortunately, you can now do so with CZPT. With the help of this software, you can generate 3D models of spiral bevel gears. Once you’ve created your model, you can then machine it. This can make your job much easier! And it’s fun!
In terms of manufacturing, straight bevel gears are the easiest to produce. The earliest method for this type of gear is a planer with an indexing head. Since the development of CNC machining, however, more effective manufacturing methods have been developed. These include CZPT, Revacycle, and Coniflex systems. The CZPT uses the Revacycle system. You can also use a CNC mill to manufacture spiral bevel gears.
gear

Hypoid bevel gears

When it comes to designing hypoid bevel gears for miter and other kinds of gears, there are several important parameters to consider. In order to produce high-quality gearings, the mounting distance between the gear teeth and the pinion must be within a predefined tolerance range. In other words, the mounting distance between the gear teeth and pinion must be 0.05 mm or less.
To make this possible, the hypoid bevel gearset mesh is designed to involve sliding action. The result is a quiet transmission. It also means that higher speeds are possible without increasing noise levels. In comparison, bevel gears tend to be noisy at high speeds. For these reasons, the hypoid gearset is the most efficient way to build miter gears. However, it’s important to keep in mind that hypoid gears are not for every application.
Hypoid bevel gears are analogous to spiral bevels, but they don’t have intersecting axes. Because of this, they can produce larger pinions with smooth engagement. Crown bevel gears, on the other hand, have a 90-degree pitch and parallel teeth. Their geometry and pitch is unique, and they have particular geometrical properties. There are different ways to express pitch. The diametral pitch is the number of teeth, while circumferential measurement is called the circumference.
The face-milling method is another technique used for the manufacture of hypoid and spiral bevel gears. Face-milling allows gears to be ground for high accuracy and surface finish. It also allows for the elimination of heat treatment and facilitates the creation of predesigned ease-off topographies. Face-milling increases mechanical resistance by as much as 20%. It also reduces noise levels.
The ANSI/AGMA/ISO standards for geometric dimensioning differ from the best practices for manufacturing hypoid and bevel gears. The violation of common datum surfaces leads to a number of geometrical dimensioning issues. Moreover, hypoid gears need to be designed to incorporate the base pitches of the mating pinion and the hypoid bevel gear. This is not possible without knowing the base pitch of the gear and the mating pinion.

Crown bevel gears

When choosing crown bevels for a miter gear, you will need to consider a number of factors. Specifically, you will need to know the ratio of the tooth load to the bevel gear pitch radius. This will help you choose a bevel gear that possesses the right amount of excitation and load capacity. Crown bevels are also known as helical gears, which are a combination of two bevel gear types.
These bevel gears differ from spiral bevels because the bevels are not intersected. This gives you the flexibility of using a larger pinion and smoother engagement. Crown bevel gears are also named for their different tooth portions: the toe, or the part of the gear closest to the bore, and the heel, or the outermost diameter. The tooth height is smaller at the toe than it is at the heel, but the height of the gear is the same at both places.
Crown bevel gears are cylindrical, with teeth that are angled at an angle. They have a 1:1 gear ratio and are used for miter gears and spur gears. Crown bevel gears have a tooth profile that is the same as spur gears but is slightly narrower at the tip, giving them superior quietness. Crown bevel gears for miter gears can be made with an offset pinion.
There are many other options available when choosing a Crown bevel gear for miter gears. The material used for the gears can vary from plastics to pre-hardened alloys. If you are concerned with the material’s strength, you can choose a pre-hardened alloy with a 32-35 Rc hardness. This alloy also has the advantage of being more durable than plastic. In addition to being stronger, crown bevel gears are also easier to lubricate.
Crown bevel gears for miter gears are similar to spiral bevels. However, they have a hyperbolic, not conical, pitch surface. The pinion is often offset above or below the center of the gear, which allows for a larger diameter. Crown bevel gears for miter gears are typically larger than hypoid gears. The hypoid gear is commonly used in automobile rear axles. They are useful when the angle of rotation is 90 degrees. And they can be used for 1:1 ratios.
gear

Spiral miter gears

Spiral bevel gears are produced by machining the face surface of the teeth. The process follows the Hertz theory of elastic contact, where the dislocations are equivalent to small significant dimensions of the contact area and the relative radii of curvature. This method assumes that the surfaces are parallel and that the strains are small. Moreover, it can reduce noise. This makes spiral bevel gears an ideal choice for high-speed applications.
The precision machining of CZPT spiral miter gears reduces backlash. They feature adjustable locking nuts that can precisely adjust the spacing between the gear teeth. The result is reduced backlash and maximum drive life. In addition, these gears are flexible enough to accommodate design changes late in the production process, reducing risk for OEMs and increasing efficiency and productivity. The advantages of spiral miter gears are outlined below.
Spiral bevel gears also have many advantages. The most obvious of these advantages is that they have large-diameter shafts. The larger shaft size allows for a larger diameter gear, but this means a larger gear housing. In turn, this reduces ground clearance, interior space, and weight. It also makes the drive axle gear larger, which reduces ground clearance and interior space. Spiral bevel gears are more efficient than spiral bevel gears, but it may be harder to find the right size for your application.
Another benefit of spiral miter gears is their small size. For the same amount of power, a spiral miter gear is smaller than a straight cut miter gear. Moreover, spiral bevel gears are less likely to bend or pit. They also have higher precision properties. They are suitable for secondary operations. Spiral miter gears are more durable than straight cut ones and can operate at higher speeds.
A key feature of spiral miter gears is their ability to resist wear and tear. Because they are constantly being deformed, they tend to crack in a way that increases their wear and tear. The result is a harder gear with a more contoured grain flow. But it is possible to restore the quality of your gear through proper maintenance. If you have a machine, it would be in your best interest to replace worn parts if they aren’t functioning as they should.

China China Professional Harmonic Drive Gear with Wave Generator     spiral bevel gearChina China Professional Harmonic Drive Gear with Wave Generator     spiral bevel gear
editor by czh 2022-11-26

Recent Posts